
doepy
Release 0.0.1

Jul 25, 2019





Contents

1 Design of Experiment Generator in Python (pip install doepy) 1

2 Introduction 3

3 How to use it? 5
3.1 What supporitng packages are required? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 How to install the package? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Github . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Latin Hypercube design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Other functions to try on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Read from and write to CSV files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 A simple pipeline for building a DOE table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Features 11
4.1 Limitation of the foundation packages used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Simplified user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Pandas DataFrame support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Coming in a future release - support for more types of files . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Designs available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 About Design of Experiment 13
5.1 What is a scientific experiment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 What is Experimental Design? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Options for open-source DOE builder package in Python? . . . . . . . . . . . . . . . . . . . . . . . 13

6 Acknowledgements and Requirements 15

i



ii



CHAPTER 1

Design of Experiment Generator in Python (pip install doepy)

Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, California.

Check my website for detailes about my other projects and data science/ML articles.

1

https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7/
https://tirthajyoti.github.io


doepy, Release 0.0.1

2 Chapter 1. Design of Experiment Generator in Python (pip install doepy)



CHAPTER 2

Introduction

Design of Experiment (DOE) is an important activity for any scientist, engineer, or statistician planning to conduct
experimental analysis. This exercise has become critical in this age of rapidly expanding field of data science and
associated statistical modeling and machine learning. A well-planned DOE can give a researcher meaningful data
set to act upon with optimal number of experiments preserving critical resources.

After all, aim of Data Science is essentially to conduct highest quality scientific investigation and mod-
eling with real world data. And to do good science with data, one needs to collect it through carefully
thought-out experiment to cover all corner cases and reduce any possible bias.

3

https://en.wikipedia.org/wiki/Design_of_experiments


doepy, Release 0.0.1

4 Chapter 2. Introduction



CHAPTER 3

How to use it?

3.1 What supporitng packages are required?

First make sure you have all the necessary packages installed. You can simply run the .bash (Unix/Linux) and .bat
(Windows) files provided in the repo, to install those packages from your command line interface. They contain the
following commands,

pip install numpy
pip install pandas
pip install pydoe
pip install diversipy

3.2 How to install the package?

You can pip install the package!

pip install doepy

3.3 Github

The package is hosted at this Github repo.

3.4 Quick start

Let’s say you have a design problem with the following table for the parameters range. Imagine this as a generic ex-
ample of a checmical process in a manufacturing plant. You have 3 levels of Pressure, 3 levels of Temperature,
2 levels of FlowRate, and 2 levels of Time.

5

https://github.com/tirthajyoti/doepy


doepy, Release 0.0.1

Pressure Temperature FlowRate Time
40 290 0.2 5
50 320 0.3 8
70 350 • •

First, import build module from the package,

from doepy import build

Then, try a simple example by building a full factorial design. We will use build.full_fact() function for
this. You have to pass a dictionary object to the function which encodes your experimental data.

build.full_fact(
{'Pressure':[40,55,70],
'Temperature':[290, 320, 350],
'Flow rate':[0.2,0.4],
'Time':[5,8]}
)

If you build a full-factorial DOE out of this, you should get a table with 3x3x2x2 = 36 entries.

Pressure Temperature FlowRate Time
40 290 0.2 5
50 290 0.2 5
70 290 0.2 5
40 320 0.2 5
. . . . . . . . . . . .
. . . . . . . . . . . .
40 290 0.3 8
50 290 0.3 8
70 290 0.3 8
40 320 0.3 8
. . . . . . . . . . . .
. . . . . . . . . . . .

There are, of course, half-factorial designs to try!

3.5 Latin Hypercube design

Sometimes, a set of randomized design points within a given range could be attractive for the experimenter to asses
the impact of the process variables on the output. Monte Carlo simulations are close example of this approach.

However, a Latin Hypercube design is better choice for experimental design rather than building a complete random
matrix as it tries to subdivide the sample space in smaller cells and choose only one element out of each subcell. This
way, a more uniform spreading’ of the random sample points can be obtained.

User can choose the density of sample points. For example, if we choose to generate a Latin Hypercube of 12
experiments from the same input files, that could look like,

build.space_filling_lhs(
{'Pressure':[40,55,70],

(continues on next page)

6 Chapter 3. How to use it?

https://en.wikipedia.org/wiki/Monte_Carlo_method


doepy, Release 0.0.1

(continued from previous page)

'Temperature':[290, 320, 350],
'Flow rate':[0.2,0.4],
'Time':[5,11]},
num_samples = 12
)

Pressure Temperature FlowRate Time
63.16 313.32 0.37 10.52
61.16 343.88 0.23 5.04
57.83 327.46 0.35 9.47
68.61 309.81 0.35 8.39
66.01 301.29 0.22 6.34
45.76 347.97 0.27 6.94
40.48 320.72 0.29 9.68
51.46 293.35 0.20 7.11
43.63 334.92 0.30 7.66
47.87 339.68 0.26 8.59
55.28 317.68 0.39 5.61
53.99 297.07 0.32 10.43

Of course, there is no guarantee that you will get the same matrix if you run this function because this are randomly
sampled, but you get the idea!

3.5. Latin Hypercube design 7



doepy, Release 0.0.1

3.6 Other functions to try on

Try any one of the following designs,

• Full factorial: build.full_fact()

• 2-level fractional factorial: build.frac_fact_res()

• Plackett-Burman: build.plackett_burman()

• Sukharev grid: build.sukharev()

• Box-Behnken: build.box_behnken()

• Box-Wilson (Central-composite) with center-faced option: build.central_composite() with
face='ccf' option

• Box-Wilson (Central-composite) with center-inscribed option: build.central_composite() with
face='cci' option

• Box-Wilson (Central-composite) with center-circumscribed option: build.central_composite() with
face='ccc' option

• Latin hypercube (simple): build.lhs()

• Latin hypercube (space-filling): build.space_filling_lhs()

• Random k-means cluster: build.random_k_means()

• Maximin reconstruction: build.maximin()

• Halton sequence based: build.halton()

• Uniform random matrix: build.uniform_random()

3.7 Read from and write to CSV files

Internally, you pass on a dictionary object and get back a Pandas DataFrame. But, for reading from and writing to
CSV files, you have to use the read_write module of the package.

from doepy import read_write
data_in=read_write.read_variables_csv('../Data/params.csv')

Then you can use this data_in object in the DOE generating functions.

For writing back to a CSV,

df_lhs=build.space_filling_lhs(data_in,num_samples=100)
filename = 'lhs'
read_write.write_csv(df_lhs,filename=filename)

You should see a lhs.csv file in your directory.

3.8 A simple pipeline for building a DOE table

Clubbing together the build functions and the read_write module, one can devise a simple pipeline to build a
DOE from a CSV file input.

8 Chapter 3. How to use it?



doepy, Release 0.0.1

Suppose, you have a file called ranges.csv, which contains min/max values of an arbitrary number of parameters, in
your directory. Just two lines of code will generate a space-filling Latin hypercube design based on this file with 100
randomized samples spanning over the min/max ranges.

from doepy import build, read_write

read_write.write_csv(
build.space_filling_lhs(read_write.read_variables_csv('ranges.csv'),
num_samples=100),
filename='DOE_table.csv'
)

3.8. A simple pipeline for building a DOE table 9



doepy, Release 0.0.1

10 Chapter 3. How to use it?



CHAPTER 4

Features

At its heart, doepy is just a collection of functions, which wrap around the core packages (mentioned below) and
generate design-of-experiment (DOE) matrices for a statistician or engineer from an arbitrary range of input vari-
ables.

4.1 Limitation of the foundation packages used

Both the core packages, which act as foundations to this repo, are not complete in the sense that they do not cover all
the necessary functions to generate DOE table that a design engineer may need while planning an experiment. Also,
they offer only low-level APIs in the sense that the standard output from them are normalized numpy arrays. It was
felt that users, who may not be comfortable in dealing with Python objects directly, should be able to take advantage
of their functionalities through a simplified user interface.

4.2 Simplified user interface

There are other DOE generators out there. But they generate n-dimensional arrays. doepy is built on the simple
theme of being intuitive and easy to work with - for researchers, engineers, and social scientists of all background -
not just the ones who can code.

User just needs to provide a simple CSV file with a single table of variables and their ranges (2-level i.e. min/max
or 3-level).

Some of the functions work with 2-level min/max range while some others need 3-level ranges from the user (low-
mid-high). Intelligence is built into the code to handle the case if the range input is not appropriate and to generate
levels by simple linear interpolation from the given input.

The code will generate the DOE as per user’s choice and write the matrix in a CSV file on to the disk.

In this way, the only API user needs to be exposed to, are input and output CSV files. These files then can be used
in any engineering simulator, software, process-control module, or fed into process equipments.

11



doepy, Release 0.0.1

4.3 Pandas DataFrame support

Under the hood, doepy generates Numpy arrays and convert them to Pandas DataFrame. Therefore, programatically,
it is simple to get those Numpy arrays or DataFrames to do more, if the user wishes so.

4.4 Coming in a future release - support for more types of files

Support for more input/output types will come in future releases - MS Excel, JSON, etc.

4.5 Designs available

• Full factorial,

• 2-level fractional factorial,

• Plackett-Burman,

• Sukharev grid,

• Box-Behnken,

• Box-Wilson (Central-composite) with center-faced option,

• Box-Wilson (Central-composite) with center-inscribed option,

• Box-Wilson (Central-composite) with center-circumscribed option,

• Latin hypercube (simple),

• Latin hypercube (space-filling),

• Random k-means cluster,

• Maximin reconstruction,

• Halton sequence based,

• Uniform random matrix

12 Chapter 4. Features



CHAPTER 5

About Design of Experiment

5.1 What is a scientific experiment?

In its simplest form, a scientific experiment aims at predicting the outcome by introducing a change of the precondi-
tions, which is represented by one or more independent variables, also referred to as “input variables” or “predictor
variables.” The change in one or more independent variables is generally hypothesized to result in a change in one or
more dependent variables, also referred to as “output variables” or “response variables.” The experimental design may
also identify control variables that must be held constant to prevent external factors from affecting the results.

5.2 What is Experimental Design?

Experimental design involves not only the selection of suitable independent, dependent, and control variables, but
planning the delivery of the experiment under statistically optimal conditions given the constraints of available re-
sources. There are multiple approaches for determining the set of design points (unique combinations of the settings
of the independent variables) to be used in the experiment.

Main concerns in experimental design include the establishment of validity, reliability, and replicability. For example,
these concerns can be partially addressed by carefully choosing the independent variable, reducing the risk of mea-
surement error, and ensuring that the documentation of the method is sufficiently detailed. Related concerns include
achieving appropriate levels of statistical power and sensitivity.

Need for careful design of experiment arises in all fields of serious scientific, technological, and even social science
investigation—computer science, physics, geology, political science, electrical engineering, psychology, business mar-
keting analysis, financial analytics, etc. . .

5.3 Options for open-source DOE builder package in Python?

Unfortunately, majority of the state-of-the-art DOE generators are part of commercial statistical software packages
like JMP (SAS) or Minitab. However, a researcher will surely be benefited if there exists an open-source code which
presents an intuitive user interface for generating an experimental design plan from a simple list of input variables.

13

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Controlling_for_a_variable
https://en.wikipedia.org/wiki/Validity_%28statistics%29
https://en.wikipedia.org/wiki/Reliability_%28statistics%29
https://en.wikipedia.org/wiki/Reproducibility
https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://www.jmp.com/
www.minitab.com/en-US/default.aspx


doepy, Release 0.0.1

There are a couple of DOE builder Python packages but individually they don’t cover all the necessary DOE methods
and they lack a simplified user API, where one can just input a CSV file of input variables’ range and get back the
DOE matrix in another CSV file.

14 Chapter 5. About Design of Experiment



CHAPTER 6

Acknowledgements and Requirements

The code was written in Python 3.7. It uses following external packages that needs to be installed on your system to
use it,

• pydoe: A package designed to help the scientist, engineer, statistician, etc., to construct appropriate experi-
mental designs. Check the docs here.

• diversipy: A collection of algorithms for sampling in hypercubes, selecting diverse subsets, and measuring
diversity. Check the docs here.

• numpy

• pandas

15

https://pythonhosted.org/pyDOE/
https://www.simonwessing.de/diversipy/doc/

	Design of Experiment Generator in Python (pip install doepy)
	Introduction
	How to use it?
	What supporitng packages are required?
	How to install the package?
	Github
	Quick start
	Latin Hypercube design
	Other functions to try on
	Read from and write to CSV files
	A simple pipeline for building a DOE table

	Features
	Limitation of the foundation packages used
	Simplified user interface
	Pandas DataFrame support
	Coming in a future release - support for more types of files
	Designs available

	About Design of Experiment
	What is a scientific experiment?
	What is Experimental Design?
	Options for open-source DOE builder package in Python?

	Acknowledgements and Requirements

